Isomerization of all-trans-retinoic acid to 9-cis-retinoic acid.

نویسندگان

  • J Urbach
  • R R Rando
چکیده

The discovery of the biological activity of 9-cis-retinoic acid raises questions as to its mode of biosynthesis. A simple mechanism involves the direct isomerization of all-trans-retinoic acid to 9-cis-retinoic acid. It is shown here that bovine liver membranes, but not supernatant fractions, can isomerize all-trans-retinoic acid into 9-cis-retinoic acid and 13-cis-retinoic acid. The concentration of 9-cis-retinoic acid generated approaches its equilibrium concentration, which is determined here to be approximately 15%. However, the isomerization process could not be shown to be saturable, and is first-order in all-trans-retinoic acid in the concentration range measured (8.3 nM to 3 microM). Isomerization reactions measured using bovine liver microsomes appear to be mediated by thiol groups, as they can be blocked by group-specific thiol-blocking reagents such as N-ethylmaleimide. It is interesting to note that the non-stereospecific behaviour observed here mimics what is observed when all-trans-retinoic acid is applied to cells. Finally, significant formation of 9-cis-retinoids was not found when the reaction was carried out with liver microsomes and either all-trans-retinol or all-trans-retinal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonenzymatic isomerization of 9-cis-retinoic acid catalyzed by sulfhydryl compounds.

Certain thiol-containing compounds catalyze, in a chemical reaction, the isomerization of 9-cis-retinoic acid to a mixture of all-trans-retinoic acid, 9-cis-retinoic acid, 13-cis-retinoic acid, and 9,13-dicis-retinoic acid. In the presence of such catalysts, all-trans-retinoic acid gives rise to the same mixture. Reactions approaching equilibrium contain more all-trans-retinoic acid than either...

متن کامل

A novel isoenzyme of aldehyde dehydrogenase specifically involved in the biosynthesis of 9-cis and all-trans retinoic acid.

The pleiotropic effects of retinoids are mediated by two families of nuclear receptors: RAR (retinoic acid receptors) and RXR (retinoid X receptors). 9-cis-Retinoic acid is a specific ligand for RXR receptors, whereas either 9-cis- or all-trans-retinoic acid activates the RAR receptor family. The existence of RXRs suggests a new role for isomerization in the biology of retinoic acid. We report ...

متن کامل

Biotransformation of 13-cis- and 9-cis-retinoic acid to all-trans-retinoic acid in rat conceptal homogenates. Evidence for catalysis by a conceptal isomerase.

The purpose of this study was to investigate whether and to what extent the steric isomerization of retinoic acids in conceptal tissues can be attributed to enzymatic catalysis in addition to thiol-dependent, nonenzymatic catalysis. Conversions of 13-cis-retinoic acid and 9-cis-retinoic acid to all-trans-retinoic acid catalyzed by cell-free preparations of conceptal rat tissues (gestational day...

متن کامل

Pharmacokinetics of 9-cis-retinoic acid in the rhesus monkey.

9-cis-Retinoic acid is a naturally occurring biologically active retinoid capable of binding and transactivating both the retinoic acid receptors and the retinoid X receptors. A study was performed to characterize the pharmacokinetics 9-cis-retinoic acid following i.v. bolus administration in the nonhuman primate. Groups of three animals received i.v. bolus doses of 9-cis-retinoic acid of eithe...

متن کامل

Metabolites of all-trans-retinoic acid in bile: identification of all-trans- and 13-cis-retinoyl glucuronides.

The metabolites of all-trans-[3H]retinoic acid were studied in the rat bile. In the bile duct cannulated rat 80 to 86% of the dose is excreted into the bile within 24 h after the intravenous administration of either a physiological or pharmacological dose of all-trans-[3H]retinoic acid. Polar metabolites of retinoic acid predominate (73 to 96% of bile 3H) in the bile at all times; some free ret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 299 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1994